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Abstract

For a certain class of perturbations of the equation ut = f (u)ux , we prove the existence of change of coordinates, called quasi-
Miura transformations, that reduce these perturbed equations to the unperturbed one. As an application, we propose a criterion for
the integrability of these equations.
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1. Introduction

The notion of quasi-triviality for a certain class of evolutionary partial differential equations (PDEs) was introduced
in [8]. Let us first explain this notation by looking at the example of the Kortweg-de Vries (KdV) equation

ut = uux +
ε2

12
uxxx , (1.1)

where u = u(x, t) and ε is the dispersion parameter. By the definition of [8], this equation is quasi-trivial, which
means that we can perform a change of the dependent variable

v = u +
ε2
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(1.2)

such that, in the new dependent variable, the KdV equation is formally reduced to the dispersionless equation

vt = vvx . (1.3)
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Here, the transformation (1.2) is understood to be a formal power series of ε. The inverse transformation has the form

u = v +
ε2

24
∂2

x

[
log vx +

ε2

240

(
5

v(4)

v2
x

− 21
vxxvxxx

v3
x

+ 16
v3

xx

v4
x

)
+ O(ε4)

]
. (1.4)

This property of the KdV equation was first observed in [1] (see also [8]). It corresponds to the genus expansion
formula for the free energy of the two-dimensional (2D) topological gravity [5,10,14] which provides one of the
important links between 2D topological field theory and integrable hierarchies [7,8,10,15,21]. In [8,9] it was proved
that such a property of quasi-triviality is also shared by a wide class of bihamiltonian integrable hierarchies, and it
plays an important role in the study of the problem of the classification of these integrable hierarchies. In a very
recent paper [6], Dubrovin showed that, at the approximation up to ε4, any Hamiltonian perturbation of the Eq. (1.3)
is quasi-trivial.

In the present paper we consider, without the assumption of possession of Hamiltonian structures, the property of
quasi-triviality for a class of generalized scalar evolutionary PDEs of the form

ut = f (u)ux + ε( f1(u)uxx + f2(u)u2
x )

+ ε2( f3(u)uxxx + f4(u)ux uxx + f5(u)u3
x ) + · · · , f ′(u) 6= 0. (1.5)

Here, the right-hand side of the equation is a power series of the parameter ε, the coefficients of εk are graded
homogeneous polynomials of degree k +1 of the variables ux , uxx , . . . with deg ∂k

x u = k, and the coefficients of these
polynomials are assumed to be smooth functions of u. Note that, when the power series of ε is a polynomial, (1.5)
becomes a usual evolutionary PDE.

We are going to prove the quasi-triviality of the Eq. (1.5) according to the following definition of [8]:

Definition 1.1. The generalized evolutionary PDE (1.5) is called quasi-trivial if there exists a quasi-Miura
transformation of the form

u = v +

∑
k≥1

εk Fk(v, vx , . . . , ∂
mk
x v) (1.6)

that formally reduces it to the equation

vt = f (v)vx . (1.7)

Here, Fk, k ≥ 1 are smooth functions and mk are some positive integers.

We call a quasi-Miura transformation of the form (1.6) that transforms the Eq. (1.5) to its leading term Eq. (1.7)
the reducing transformation of (1.5). The transformation (1.6) has an inverse of the same form. Note that, in the
original definition of quasi-triviality given in [8,9], the coefficients Fk of the quasi-Miura transformation are required
to be rational in the variables ux , uxx , . . .. Here we slightly generalize this definition, see Section 4 for the explicit
description of the quasi-Miura transformations that we will encounter in this paper.

The main motivation of this work originates from our attempt to generalize the classification scheme given in [8] for
a class of bihamiltonian evolutionary PDEs; we expect that the requirement of bihamiltonian property can be replaced
by a weaker one. The first step along this line is to find a more general class of evolutionary PDEs that possess the
quasi-triviality property, since this property of the equations plays an important role in the classification scheme [8,9,
16]. Another motivation for our study comes from the application of the reducing transformation to the perturbative
study of solutions of the Eq. (1.5); see for example [6], in which such reducing transformations are used to study the
critical behavior of solutions of the perturbed equations.

A direct consequence of the quasi-triviality property is the existence of infinitely many flows of the form

us = h(u)ux +

∑
k≥2

εk−1Wk(u, ux , . . . , ∂
nk u) (1.8)

that commute with the flow (1.5), where h(u) is an arbitrary smooth function. By imposing the conditions of
polynomial dependence of the functions Wk on the variables ux , . . . , ∂

nk u, we propose a criterion for the formal
integrability of the Eq. (1.5).
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The plan of the paper is as follows. In Sections 2 and 3, we introduce some basic notations, including the
Definition 3.9 of formal integrability for the equations of the form (1.5), and prove an important property of the
formally integrable equations in Theorem 3.10. In Section 4, we prove the quasi-triviality of the equations of the
form (1.5) and summarize the main results in Theorems 4.3 and 4.5. In Section 5, we describe a criterion of formal
integrability and illustrate this notation by some examples. Finally, in the conclusion we discuss the generalization of
the quasi-triviality property to certain systems of evolutionary PDEs.

2. Miura-type transformations

We first introduce some notations that will be used in this paper; see [8] for more detailed expositions. Let u(x)

be a smooth function of a real variable x and denote u0 = u(x), us = ∂s
x u(x), s ≥ 1. We define the ring R of

differential polynomials of u(x) as

R = C∞(u0)[u1, u2, . . .]. (2.1)

It is a graded ring with deg ui = i, i ≥ 1, and deg h(u0) = 0 for any smooth function h. We denote by A the ring of
formal power series of an indeterminate ε of the form

f =

∑
i≥0

fi (u0, . . . , ui )ε
i (2.2)

where fi ∈ R are homogeneous differential polynomials of degree i .
The derivations of A form a Lie algebra

g =

{
X̂ =

∑
s≥0

Xs
∂

∂us

∣∣∣∣ Xs ∈ A

}
(2.3)

with Lie bracket[∑
s≥0

Xs
∂

∂us
,
∑
s≥0

Ys
∂

∂us

]
=

∑
s≥0

Zs
∂

∂us
, where Zs =

∑
t≥0

(
X t

∂Ys

∂ut
− Yt

∂ Xs

∂ut

)
. (2.4)

We regard the ring A as the coordinate ring of an infinite dimensional manifold, and the Lie algebra g as the Lie
algebra of vector fields of this manifold.

Introduce the differential operator ∂x ∈ g by

∂x =

∑
s≥0

us+1
∂

∂us
. (2.5)

An element X̂ ∈ g is called an evolutionary vector field if [X̂ , ∂x ] = 0, which implies that

X̂ =

∑
s≥0

(
∂s

x X
) ∂

∂us
for certain X ∈ A . (2.6)

The function X is called the component of the evolutionary vector field X̂ . Denote

E = {the vector space of evolutionary vector fields}. (2.7)

Then we readily have the following proposition:

Proposition 2.1. The vector space E is a Lie subalgebra of g with the center {a ∂x |a ∈ R}, and its Lie bracket can be
expressed as

[X̂ , Ŷ ] = Ẑ , where Z = X̂(Y ) − Ŷ (X), ∀ X̂ , Ŷ ∈ E . (2.8)



104 S.-Q. Liu, Y. Zhang / Journal of Geometry and Physics 57 (2006) 101–119

Since the map X 7→ X̂ is a bijection between A and E , we can pull back the Lie bracket of E to A . Then we
obtain a Lie bracket on A

[X, Y ] = X̂(Y ) − Ŷ (X) =

∑
s≥0

((
∂s

x X
) ∂Y

∂us
−
(
∂s

x Y
) ∂ X

∂us

)
. (2.9)

Henceforth, we will also call an element X of A a vector field.
The subalgebra B of the Lie algebra (A , [·, ·]) defined by

B =

{
X =

∑
i≥1

fi (u0, . . . , ui )ε
i
∈ A | deg fi = i

}
(2.10)

corresponds to the class of evolutionary PDEs that we will study in this paper. Namely, if we express X in the form

X = ε f (u)ux + ε2( f1(u)uxx + f2(u)u2
x ) + ε3( f3(u)uxxx + f4(u)ux uxx + f5(u)u3

x ) + · · · , (2.11)

and assume that it satisfies the condition f ′(u) 6= 0, then

ut = ε−1 X (2.12)

is just Eq. (1.5). A vector field X ∈ B that satisfies the above condition will be called generic. We call ε f (u)ux the
leading term of the vector field X , and Eq. (1.7) the leading term equation of (2.12).

In the next section, we will consider the normal forms of the generalized evolutionary PDEs of the form (1.5) under
the Miura-type transformations.

Definition 2.2 ([8]). A Miura-type transformation is a transformation on the ring A which has the form

u 7→ ũ = X0(u) + εX1(u)u1 + ε2
(

X2(u)u2 + X3(u)u2
1

)
+ · · · ,

∂ X0(u)

∂u
6= 0. (2.13)

A Miura-type transformation is an automorphism of the ring A , and it induces an automorphism of the Lie algebra
B. It is easy to see that all such transformations form a group which is called the Miura group [8]. It is the semi-direct
product of two subgroups. The first subgroup is the local diffeomorphism group of R

u 7→ ũ = f (u), where
∂ f

∂u
6= 0. (2.14)

The second subgroup is formed by the Miura-type transformations with X0(u) = u. One can prove that any Miura-
type transformation with X0(u) = u can be expressed as

g : u 7→ ũ = eŶ u = u + Ŷ (u) +
1
2

Ŷ (Ŷ (u)) +
1
6

Ŷ (Ŷ (Ŷ (u))) + · · · (2.15)

where Y = εY1(u)u1 + ε2
(
Y2(u)u2 + Y3(u)u2

1

)
+ · · · ∈ B. The automorphism of B induced by this Miura-type

transformation g is given by

X 7→ g(X) = e−adY X = X − [Y, X ] +
1
2
[Y, [Y, X ]] −

1
6
[Y, [Y, [Y, X ]]] + · · · . (2.16)

Here, the vector field g(X) is obtained by first expressing the vector field X in the new coordinate ũ, then re-denoting
ũ by u. We call the transformations of these two subgroups the Miura-type transformations of the first and second
kind, respectively.

3. Formal symmetries and integrability

In this section, we first give the definition of formal symmetries for a generalized evolutionary PDE of the form
(1.5) (or, equivalently, (2.12) for a generic vector field X ∈ B) then, based on the properties of the formal symmetries,
we introduce the notion of formal integrability. We show that the property of formal integrability of a equation of the
form (1.5) is equivalent to the existence of a unique reduced form of the equation under Miura-type transformations.
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Definition 3.1. Given a generic vector field X ∈ B of the form (2.11), a formal symmetry of Eq. (1.5) is a flow of the
form

ε∂su = Y, Y ∈ B (3.1)

which commutes with (1.5). We will also call Y a formal symmetry of the vector field X .

This definition is adopted from the usual definition of generalized infinitesimal symmetries of an evolutionary PDE.
It differs from the usual one at the following two points. Firstly, even when (1.5) is a usual evolutionary PDE whose
right-hand side is truncated, i.e. a polynomial of the finite number of variables u1, . . . , um for certain positive integer
m, its formal symmetries are not necessarily truncated. In the usual definition, an infinitesimal symmetry depends only
on a finite number of the variables ui , i ≥ 1. Secondly, the right-hand side of a formal symmetry (3.1) is required
to have the same form (2.11) as the vector field X (except for the condition f ′(u) 6= 0). These features of the formal
symmetries will play a crucial role in our discussion of formal integrability of the equations of the form (1.5).

Before the exposition of properties of the formal symmetries, let us first do some preparations. Let P be the set of
all ordered sequences of integers λ = (λ1, λ2, . . .) with the properties

λ1 ≥ λ2 ≥ · · · ≥ 0, |λ| =

∑
i≥1

λi < ∞. (3.2)

We call |λ| the degree of λ, and denote by Pd the subset of degree d elements of P . Each λ ∈ P is associated with
a unique monomial

uλ =

∏
i≥1

uλi ∈ R. (3.3)

Given two elements λ, µ ∈ Pd , we say λ > µ (resp. λ < µ) if the first non-zero entry of the sequence
(λ1 − µ1, λ2 − µ2, λ3 − µ3, . . .) is greater (resp. less) than 0. By using this ordering of Pd , we can define in a
natural way the highest order term of a homogeneous differential polynomial X ∈ R of degree d. For example, the
highest order term of

X = X1(u)u4u1 + X2(u)u3u2 + X3(u)u2u2u1 (3.4)

is X1(u)u4u1, and we denote the sum of all other terms in X by l.o.t.

Lemma 3.2. Let X ∈ R be homogeneous of degree d of the form

X = f (u)

m∏
k=1

(uk)
αk + l.o.t, (3.5)

then we have

[uu1, X ] =

(
m∑

k=2

αk + d − 1

)
f (u)u1

m∏
k=1

(uk)
αk + l.o.t. (3.6)

Proof. After the substitution of (3.5) into (2.9), we can prove the lemma by a straightforward computation. �

Lemma 3.3. Assume that X ∈ R is given as in the above lemma. Then [uu1, X ] = 0 if and only if d = 1, i.e. X has
the form X = f (u)u1.

Proof. Let X have the form (3.5) and satisfy [uu1, X ] = 0, then from Lemma 3.2 we obtain α1 = 1, α2 = · · · =

αm = 0, so X = f (u)u1. Conversely, it is obvious that the identity [uu1, X ] = 0 holds true for any vector field X of
the form f (u)u1. The lemma is proved. �

Lemma 3.4. For a homogeneous differential polynomial Y ∈ R of degree d > 2, if the highest order term of Y has
a factor u1, then we can find a homogeneous differential polynomial X ∈ R of degree d − 1 such that [u0 u1, X ] has
the same highest order term as that of Y .
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Proof. When d ≥ 2, we always have
(∑m

k=2 αk + d − 1
)

6= 0. So, the lemma immediately follows from
Lemma 3.2. �

Theorem 3.5. Let Y ∈ B be a symmetry of a generic vector field X ∈ B and Y 6= aux , a ∈ R. Then Y is also
generic and is determined by its leading terms.

Proof. We only need to prove that symmetries are determined by their leading terms. Let Y, Z ∈ B be two symmetries
of the generic vector field X ∈ B and have the same leading terms. Then from the identity

[X, Y − Z ] = [X, Y ] − [X, Z ] = 0 (3.7)

it follows that W = Y − Z is also a symmetry of X . Since Y, Z have the same leading terms, the vector field W has
the following expression

W =

∑
d≥2

εd Wd(u, u1, . . . , ud). (3.8)

Denote

X =

∑
d≥1

εd Xd(u, . . . , ud). (3.9)

Then from (3.7) we know that the vector field ε2W2 is a symmetry of the vector field εX1(u, u1). According to
Lemma 3.3, symmetries of εX1(u, u1) must be of degree 1, so we have W2 = 0. Similarly, we can prove that all the
Wm vanish and, consequently, Y = Z . The theorem is proved. �

Corollary 3.6. Let X ∈ B be generic, and Y1, Y2 be two symmetries of X, then [Y1, Y2] = 0.

Proof. By using the Jacobi identity, we know that [Y1, Y2] is also a symmetry of X . But the leading term of [Y1, Y2]

vanishes, so from Theorem 3.5 it follows that [Y1, Y2] = 0. �

Remark 3.7. Let us denote X ∼ Y if [X, Y ] = 0, then the above corollary shows that ∼ is an equivalence relation on
the set of generic vector fields of B.

Theorem 3.8. For any generic X ∈ B, there exists a Miura-type transformation g such that

g(X) = εuu1 + ε2
(

f(2)u2 + f(1,1)u
2
1

)
+

∑
d≥3

εd

 ∑
λ∈Pd

1

fλ(u)uλ

 , (3.10)

where Pd
1 is the set of partitions of degree d whose non-zero entries are greater than 1.

Proof. Let ε f (u)u1 be the leading term of the vector field X . We can use a Miura-type transformation of the first kind
ũ = f (u) to transform X to the following form:

g(X) = εuu1 +

∑
d≥2

εd

( ∑
λ∈Pd

fλ(u)uλ

)
. (3.11)

Then, by using Lemma 3.4, we can find a series of Miura-type transformations of the second kind to eliminate the
terms with factor u1 step by step (except for the terms of degree 2). The theorem is proved. �

The expression (3.10) is called a reduced form of the vector field X . Note that such a reduced form may not be
unique.

Definition 3.9. A generalized evolutionary PDE of the form (1.5) that corresponds to a generic vector field X ∈ B of
the form (2.11) is called formally integrable, if any vector field of the form Y = εh(u)u1 ∈ B can be extended to a
symmetry

Ỹ = εh(u)u1 +

∑
k≥2

εkYk ∈ B (3.12)

of this equation.
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By definition, a formally integrable equation of the form (1.5) must have infinitely many formal symmetries. Thus
this definition is an adaption of the commonly used one of integrability from the point of view of symmetries in
soliton theory, see for example [11,12,17–20] and references therein, to the present class of generalized evolutionary
PDEs. In [11,12], it was conjectured by Fokas that the existence of a single time independent non-Lie point symmetry
implies the existence of infinitely many for a scalar evolutionary PDE. We will reformulate this conjecture for our
class of equations and their formal symmetries in Section 5. In [17,18,20], Mikhailov, Shabat and their collaborators
formulated certain necessary conditions for the existence of a higher order symmetry for a system of evolutionary
PDEs. These conditions are expressed in terms of the so called canonical conservation laws, which yield an effective
algorithm of testing the existence of a higher order symmetry for certain class of evolutionary PDEs of lower order.
In [19], Sanders and Wang gave a symbolic algorithm of checking the existence of symmetries for a certain class
of scalar evolutionary PDE; such equations depend polynomially on the dependent variable and its x-derivatives,
and satisfy certain homogeneity conditions. In Section 5, we will give an alternative way of checking the formal
integrability of the generalized evolutionary PDEs; our approach is based on the quasi-triviality of such equations,
which will be proved in the next section.

The following theorem relates the uniqueness of the reduced form of a vector field to the integrability of the
corresponding PDE.

Theorem 3.10. A generic vector field X ∈ B of the form (2.11) has a unique reduced form if and only if the
corresponding Eq. (1.5) is formally integrable.

Proof. Without loss of generality, we assume that X is already in a reduced form that is given by the right-hand side
of (3.10).

Let us first assume that the reduced form of X is unique. Given a vector field

εY1 = εh(u)u1 ∈ B,

consider the following vector field

g1(X) := eadεY1 X = εuu1 + ε2
(

f(2)u2 + f(1,1)u
2
1

)
+ · · · , (3.13)

where g1 corresponds to the Miura-type transformation

g1 : u 7→ e−εŶ1 u. (3.14)

From the proof of Theorem 3.8, we know that there exists a Miura-type transformation

g2 : u 7→ e Ẑ u, Z = ε2 Z2 + ε3 Z3 + · · · ∈ B (3.15)

which transforms g1(X) to a reduced form. It follows from our assumption on the uniqueness of reduced form for the
vector field X that

X = e−adZ g1(X).

On the other hand, e−adZ eadεY1 X can be rewritten as eadY X with a vector field Y of the form

Y = εY1 + ε2Y2 + · · · ∈ B.

From the equality X = eadY X , it then follows that the vector field X has a symmetry Y with the leading term εY1.
Thus, by our definition, the equation εut = X is integrable.

Now let us assume that the equation εut = X is integrable. If X has another reduced form X̃ , then it must be
related to X by a Miura-type transformation

X̃ = eadY X, Y = εY1 + ε2Y2 + · · · ∈ B. (3.16)

From the definition of integrability, we can find a symmetry Z of the vector field X that has the same leading term as
that of the vector field Y , i.e.

Z = εY1 +

∑
k≥2

εk Zk ∈ B. (3.17)



108 S.-Q. Liu, Y. Zhang / Journal of Geometry and Physics 57 (2006) 101–119

So we can express X̃ as

X̃ = eadY e−adZ X = eadW X. (3.18)

Here, the vector field W has the form W = ε2W2 + · · ·. Since both X and X̃ are expressed in reduced forms, by using
Lemma 3.2 we know that W = 0. Thus X̃ = X , and we proved the uniqueness of reduced form of the vector field X .
The theorem is proved. �

4. Quasi-triviality

We now proceed to consider the quasi-triviality of a generalized evolutionary PDE of the form (1.5) corresponding
to a generic vector field X of the form (2.11). Define a map from the set of infinite series to itself

R : (y1, y2, . . .) 7→ (z1, z2, . . .) (4.1)

in the following recursive way

z1 =
1
y1

, zn =
1
y1

∑
k≥1

yk+1
∂zn−1

∂yk , n ≥ 2. (4.2)

When yk are given by the kth order derivatives of a single variable smooth function A, then the above defined zk are
just the kth order derivatives of the inverse function of A. By using this observation, it is easy to see that R is an
involution, i.e. R2 is the identity map.

Lemma 4.1. The equation [uu1, f (u, u1, . . .)] = 0 for the unknown function f has the following general solution:

f =
1
φ1

c(u, φ2, φ3, . . .), (4.3)

where c is an arbitrary smooth function and (φ1, φ2, . . .) = R(u1, u2, . . .).

Proof. A solution of the equation [uu1, f (u, ux , . . .)] = 0 corresponds to a flow ∂u
∂s = f that commutes with the flow

∂u
∂t = uux . By performing a transformation

(x, t, s, u(x, t, s)) 7→ (u, t, s, x(u, t, s)), (4.4)

we can rewrite these two flows into the form

∂x

∂s
= g(u, xu, xuu, . . .),

∂x

∂t
= −u. (4.5)

Here, g = − f (u, 1
xu

, 1
xu

∂u
1
xu

, . . .) ∂x
∂u . The condition of commutativity of the flows is given by

∂g

∂t
= 0.

Due to the fact that ∂
∂t

∂k x
∂uk =

∂k

∂uk
∂x
∂t = −

∂k u
∂uk = −δk,1, we know that the general solution of the above equation has

the form g = −c(u, xuu, xuuu, . . .) for certain smooth function c. So, f must have the form (4.3), and the lemma is
proved. �

Proposition 4.2. For any given smooth function F(u, u1, . . .), the equation [uu1, f ] = F for the unknown function
f = f (u, u1, . . .) has a particular solution

f = −u1

(∫ φ1

φ1 F(u, ũ1, ũ2, . . .)dφ1

)∣∣∣∣
(φ1,φ2,...)=R(u1,u2,...)

, (4.6)

where (ũ1, ũ2, . . .) = R(φ1, φ2, . . .).



S.-Q. Liu, Y. Zhang / Journal of Geometry and Physics 57 (2006) 101–119 109

Proof. Assume that we have a solution of the form f =
1
φ1

c(u, φ1, φ2, φ3, . . .). By using the above theorem, we
know that the function c must satisfy the following equation:

∂c

∂φ1
= −φ1 F(u, u1, u2, . . .) = −φ1 F

(
u,

1
φ1

, −
φ2

φ3
1

, . . .

)
. (4.7)

Here, in the second equality we used the substitution

(u1, u2, . . .) = R(φ1, φ2, . . .) =

(
1
φ1

, −
φ2

φ3
1

, . . .

)
. (4.8)

By integrating (4.7) with respect to φ1 and making the substitution

(φ1, φ2, . . .) = R(u1, u2, . . .)

we finish the proof of the lemma. �

Now we are ready to prove the existence of a reducing transformation for the generalized evolutionary PDEs.

Theorem 4.3. Given a generalized evolutionary PDE of the form

ut = uux + ε
(

f1(u)u2 + f2(u)u2
1

)
+

∑
k≥3

εk−1Sk, (4.9)

with Sk ∈ R being homogeneous differential polynomials of degree k, we have
(i) there exists a unique transformation of the form

u 7→ v = e X̂ u, (4.10)

X =

∑
k≥1

εku−Lk
1

Mk∑
m=0

Yk,m(u, u1, . . . , uNk ) (log u1)
m (4.11)

that reduces Eq. (4.9) to vt = vvx . Here, Yk,m ∈ R are homogeneous differential polynomials of degree Lk + k, and
Lk, Mk, Nk are integers that only depend on k.
(ii) The transformation (4.10) and (4.11) also reduces any symmetry

us = h(u)u1 +

∑
k≥2

εk−1 Qk, Qk ∈ R, deg Qk = k (4.12)

of Eq. (4.9) to the form vs = h(v)vx .

Proof. Let the reducing transformation take the following form:

u 7→ v = e X̂ u = u + X̂(u) +
1
2

X̂(X̂(u)) +
1
6

X̂(X̂(X̂(u))) + · · · (4.13)

where X = εX1 + ε2 X2 + ε3 X3 + ε4 X4 + · · ·. It will eliminate all the perturbations, so we have

eadX (εS1) = εS1 + ε2S2 + ε3S3 + ε4S4 + ε5S5 + · · · (4.14)

where S1 = uu1, S2 = f1(u)u2 + f2(u)u2
1. The coefficients of εk give us the following equations:

S2 = [X1, uu1],

S3 = [X2, uu1] +
1
2
[X1, [X1, uu1]],

S4 = [X3, uu1] +
1
2
[X2, [X1, uu1]] +

1
2
[X1, [X2, uu1]] +

1
6
[X1, [X1, [X1, uu1]]]

and so on. By using Proposition 4.2, we can solve these equations and obtain X1, X2, X3, X4, . . . recursively, and the
homogeneity condition on Yk,m guarantees the uniqueness of the solution Xk, k ≥ 1. Thus, we have proved the first
part of the theorem.
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To prove the second result of the theorem, let us note that, after the transformation (4.10) and (4.11), the Eq. (4.12)
is transformed to

us = e−adX (h(u)u1 +

∑
k≥2

εk−1 Qk) = h(u)ux +

∑
k≥2

εk−1 Q̃k(u, u1, . . . , umk ) (4.15)

where, for simplicity of notation, we keep to using the symbol u instead of v, and Q̃k are homogeneous polynomials
of log u1, u1,

1
u1

, u2, . . . , umk of degree k (note that deg log u1 = 0), where mk is a positive integer depending on k.
Since the transformation (4.10) and (4.11) reduces Eq. (4.9) to the form ut = uux , we know that[

uux , h(u)ux +

∑
k≥2

εk−1 Q̃k(u, u1, . . . , uk)

]
= 0. (4.16)

By using Lemma 4.1 and the fact that deg Q̃k = k > 1, we see that the functions Q̃k must vanish. The theorem is
proved. �

Remark 4.4. We conjecture that the integers Lk, Mk, Nk have the following expressions:

Lk = 3k − 2, Mk = 2
[

k − 1
2

]
+ δ

0,
[

k−1
2

], Nk = k + 1.

We hope that they can be proved by a careful analysis of the above procedure for constructing the reducing
transformation.

By using Theorem 4.3, we are readily led to the following corollary:

Theorem 4.5. Any generalized evolutionary PDE of the form (1.5) is quasi-trivial.

As we have already noted in the introduction, the notion of quasi-Miura transformation that was introduced in [8]
(see also [9]) requires that the functions Fk(u, ux , uxx , . . .) depend rationally on the variables u1, u2, . . .. Here, we
drop this rationality condition and still call (1.6) a quasi-Miura transformation. For Eq. (1.5), when f2 f ′

− f1 f ′′
= 0,

the reducing transformation (1.6) depends rationally on the variables uk, k ≥ 1.

Example 4.6 (KdV Equation). The KdV Eq. (1.1) has the reducing transformation (1.2) and (1.4).

Example 4.7 (Camassa–Holm Equation). We consider another important equation in soliton theory, the
Camassa–Holm equation [3,4,13]:

ut − uxxt + 3uux − 2ux uxx − uuxxx = 0. (4.17)

Let us perform the rescaling t 7→ −3εt, x 7→ εx , then the above equation can be put into the following form:

εut =

(
1 − ε∂2

x

)−1
(

εuu1 − ε3
(

2
3

u1u2 +
1
3

uu3

))
= εuu1 + ε3

(
7u1u2

3
+

2uu3

3

)
+ ε5

(
23u2u3

3
+

11u1u4

3
+

2uu5

3

)
+ · · · .

(4.18)

This equation has the reducing transformation

v 7→ u = v + ε2
(

7v2

6
−

vv2
2

3v1
2 +

vv3

3v1

)
+ ε4

(
6v2

3

5v1
2 −

202vv2
4

45v1
4

+
32v2v2

5

9v1
6 −

181v2v3

90v1
+

398vv2
2v3

45v1
3 −

70v2v2
3v3

9v1
5 −

191vv3
2

90v1
2

+
19v2v2v3

2

6v1
4 +

143v4

72
−

133vv2v4

45v1
2 +

34v2v2
2v4

15v1
4 −

73v2v3v4

90v1
3

+
13vv5

18v1
−

41v2v2v5

90v1
3 +

v2v6

18v1
2

)
+ · · · .
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Both the KdV equation and the Camassa–Holm equation have bihamiltonian structures; their quasi-triviality has
been proved in [8] and [9]. The following two examples do not possess hamiltonian structures.

Example 4.8 (Burgers Equation). The Burgers equation

ut = uux + εuxx (4.19)

has the reducing transformation

v 7→ u = v + ε
v2

v1
+ ε2

(
2v2

3

v1
4 −

7v2v3

3v1
3 +

v4

2v1
2

)
+ ε3

(
24v2

5

v1
7

−
46v2

3v3

v1
6 +

16v2v3
2

v1
5 +

34v2
2v4

3v1
5 −

10v3v4

3v1
4 −

11v2v5

6v1
4 +

v6

6v1
3

)
+ ε4

(
568v2

7

v1
10 −

4544v2
5v3

3v1
9 +

1086v2
3v3

2

v1
8 −

179v2v3
3

v1
7 +

1154v2
4v4

3v1
8

−
380v2

2v3v4

v1
7 +

221v3
2v4

6v1
6 +

26v2v4
2

v1
6 −

70v2
3v5

v1
7 +

731v2v3v5

18v1
6

−
101v4v5

30v1
5 +

83v2
2v6

9v1
6 −

13v3v6

6v1
5 −

5v2v7

6v1
5 +

v8

24v1
4

)
+ · · · .

Example 4.9. Our last example is a class of equations parameterized by a smooth function f :

ut f = u1 f (u + εu1) =

∑
n≥0

εn f (n)(u)

n!
u1

n+1. (4.20)

It is easy to verify that ∂t f and ∂tg commute for arbitrary smooth functions f and g. The reducing transformation of
this equation has an explicit form

v 7→ u = eε X̂ (v) = v + ε X̂(v) +
ε2

2
X̂(X̂(v)) +

ε3

6
X̂(X̂(X̂(v))) + · · · , (4.21)

where X = v1 log(v1). This equation is quite different to those of the above three examples, because its reducing
transformation contains log(v1), while that of the KdV, the Camassa–Holm and the Burgers equations are rational in
the jet variables v1, v2, . . ..

5. Testing of integrability

Given a generalized evolutionary PDE of the form (1.5), let

g : u 7→ v

be the quasi-Miura transformation (1.6) that reduces it to the form (1.7). For any smooth function h(v), Eq. (1.7) has
a symmetry

vs = h(v)vx . (5.1)

Rewriting this flow in the u coordinates by using the quasi-Miura transformation g−1, we have

εus = εh(u)ux +

∑
k≥2

εk Wk(u, u1, . . . , mk), (5.2)

where, in general, Wk are not polynomials of the variables u1, u2, . . ..
In order to compute these Wk in a more direct way, we first perform a change of the dependent variable

u 7→ f (u) (5.3)
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to transform the Eq. (1.5) into the form

εut = X̃ , X̃ = εuux +

∑
k≥2

εk X̃k(u, . . . , uk). (5.4)

Consider the equation [X̃ , Y ] = 0 for the unknown vector field

Y = εh ◦ f −1(u)ux +

∑
k≥2

εkYk(u, . . . , unk ).

By using Proposition 4.2, we can solve this equation recursively to obtain Y . Under a certain homogeneity condition
that is similar to the one given in Theorem 4.3, the solution Y is unique. By performing the transformation
u 7→ f −1(u), the vector field Y is transformed to the form

εh(u)ux +

∑
k≥2

εk Ỹk(u, . . . , unk ).

Then we have Wk = Ỹk .
Although the above flow (5.2) commutes with the flow given by Eq. (1.5), in general it does not meet the

requirement of being a formal symmetry of (1.5) according to our Definition 3.1. This is because, in general, the
right-hand side of Eq. (5.2) does not belong to B, i.e. the functions Wk(u, u1, . . . , umk ) are not polynomials of the
variables u1, u2, . . . , umk .

Now let us come back to our Definition 3.9 of formal integrability for a generalized evolutionary PDE of the form
(1.5). By using the second result of Theorem 4.3 and the quasi-triviality of the Eq. (1.5), we know that if a vector field
εh(u)ux can be extended to a formal symmetry of the Eq. (1.5), then this formal symmetry must coincide with (5.2).
Thus we have the following:

Criterion of formal integrability. A generalized evolutionary PDE of the form (1.5) is formally integrable iff, for
any smooth function h(u), the functions Wk that appear in the right-hand side of (5.2) are homogeneous differential
polynomials of u1, u2, . . . , uk of degree k.

Let us consider the formal integrability of the four equations considered in the last section. The formal integrability
of the equation given in the fourth example is trivial, because we can write down all its symmetries explicitly. For the
other three equations, we have the following proposition:

Proposition 5.1. The KdV Eq. (1.1), the Camassa–Holm equation (4.17) and the Burgers equation (4.19) are formally
integrable.

Proof. According to Proposition 4.2 and the above construction, we know that the flow (5.2) for the KdV equation
must take the following form:

us = h(u)ux +

∑
k≥1

ε2k 1

umk
x

∑
λ∈Pmk+2k+1

Ck,λh(Dk,λ)(u)uλ, (5.5)

where mk are integers, Ck,λ are rational numbers, and Dk,λ are positive integers. To prove the theorem, we only need
to show that, for each monomial

u−mk
x Ck,λh(Dk,λ)(u)uλ (5.6)

that appears in the above expression, either Ck,λ = 0 or it can be reduced to the form

Ck,λh(Dk,λ)(u)uλ′ , λ′
∈ P.

To this end, let us take h(u) = u Dk,λ . From the classical theory of the KdV equation, we know that the flow (5.5)
belongs to the KdV hierarchy and so its right-hand side is a truncated differential polynomial. So the monomial (5.6)
has the required property and we have proved the formal integrability of the KdV equation.

In a similar way, we can prove the formal integrability of the Camassa–Holm equation and the Burgers equation.
The only technical point we should note is that the analogue of (5.5) for the Camassa–Holm equation needs to be
modified slightly. We omit the details here. The proposition is proved. �
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The following two examples illustrate a procedure for identifying the formally integrable equations among those
that possess certain particular forms.

Example 5.2. Consider the formally integrable equations among those of the form

ut = uux + ε( f1(u)uxx + f2(u)u2
x ), f1(u) 6= 0. (5.7)

By using the criterion of formal integrability, we easily obtain

f1(u) = au + b, f2(u) = −
1
2

a, (5.8)

where a, b are arbitrary constants. When a = 0, b = 1, the above equation is just the well-known Burgers
equation (4.19). If a 6= 0, we may assume, without loss of generality, that a = 1. The Galilean transformation
x 7→ x − bt, t 7→ t, u 7→ u − b converts (5.7) to the form

ut = uux + ε

(
uuxx −

1
2

u2
x

)
. (5.9)

Letting u = w2, Eq. (5.9) becomes

wt = w2 (wx + εwxx ) . (5.10)

This equation is also linearizable under the change of the independent variables and is called C-integrable; see [2] and
equation (3.37) therein.

Eq. (5.10) admits a recursion operator

R = εw∂x + w + w2 (wx + εwxx ) ∂−1
x

1

w2 . (5.11)

One can prove that R is a hereditary strong symmetry [13]. So, we obtain a hierarchy of symmetries of Eq. (5.10)
which can be expressed as

wt0 = −wx , wt1 = 0, wt2+k = Rk
(
w2 (wx + εwxx )

)
= (k + 1)wk+2wx + · · · , k ≥ 0. (5.12)

To see that all the right-hand sides of these symmetries are differential polynomials of the variables wx , wxx , . . ., we
introduce a generating function

F =

∞∑
k=0

wtk+2

λk+2 =
wt2

λ2 +
wt3

λ3 + · · · .

This function satisfies the following equation:

RF = λ
(

F −
wt2

λ2

)
. (5.13)

Letting wtk = w2∂x hk , H =
∑

k≥2
hk
λk , then Eq. (5.13) becomes a linear ordinary differential equation (ODE) of H .

Its solution is

H =
1
w

∞∑
k=0

εk (A∂x )
k
(

A
w + εwx

λ

)
, where A =

∞∑
l=1

wl

λl .

This implies that all the right-hand sides of the flows given in Eq. (5.12) are homogeneous differential polynomials. By
using a similar argument as given in the proof of Proposition 5.1, one can prove that Eq. (5.10) is formally integrable.

The integrable hierarchy (5.12) has the conservation law(
−

1
w

)
tk

= ∂x hk . (5.14)
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This defines a reciprocal transformation

dy =
1
w

dx −

∑
k≥2

hkdtk (5.15)

which transforms the whole hierarchy to the Burgers hierarchy (up to a rescaling). In the next example, we will give
more detailed explanations on the reciprocal transformation.

In the above example, the conditions (5.8) can in fact be derived by requiring the existence of a function h(u) with
h′′(u) 6= 0 such that the resulting functions Wk are differential polynomials. A similar situation also occurs in other
examples that we computed, such as the one that will be presented below. Based on these examples, we reformulate
the conjecture of Fokas [11,12] on the existence of infinitely many symmetries of a scalar evolutionary PDE for the
class of equations considered in this paper as follows:

Conjecture 5.3. A generalized evolutionary PDE of the form (1.5) is formally integrable iff there exists a smooth
function h(u) satisfying

h′′
−

h′

f ′
f ′′

6= 0, (5.16)

such that the flow (5.2) that is obtained from Eq. (5.1) by the reducing transformation of (1.5) gives a symmetry of
(1.5), i.e. the functions Wk are homogeneous differential polynomials of degree k.

Example 5.4. Consider the equation of the form

ut = uux + ε2
(

g1(u)uxxx + g2(u)ux uxx + g3(u)u3
x

)
, g1(u) 6= 0. (5.17)

Lemma 5.5. If Eq. (5.17) is formally integrable, then the functions g1, g2, g3 must satisfy the equations

9g2
1 g′′

2 − 6g1g2g′′

1 − 9g1g′

1g′

2 − 18g1g2g′

2 + 8g2g′2
1 + 12g2

2 g′

1 + 4g3
2 = 0, (5.18)

12g2
1 g′′′

1 − 8g1g′

1g′′

1 − 12g1g2g′′

1 − 3g1g′

1g′

2 + 4g′3
1 + 6g2g′2

1 + 2g2
2 g′

1 = 0 (5.19)

and the relation

g3 =
1

72g1

(
6g2

2 − 30g2g′

1 − 4g′2
1 + 27g1g′

2 + 12g1g′′

1

)
. (5.20)

Proof. By using the criterion of formal integrability, we arrive at the result of the lemma from the polynomiality
property of the first few Wk . The lemma is proved. �

Lemma 5.6. If the conditions (5.19) and (5.20) hold true and g1(u) is not a constant, then there exists a reciprocal
transformation

dy = f (u)dx + ρ(u, ux , uxx )dt, ds = dt, (5.21)

such that Eq. (5.17) is transformed to an equation of the following form:

us = f̃ (u)u y + ε2
(

u yyy + g̃2(u)u yyu y + g̃3(u)u3
y

)
. (5.22)

Proof. To define the reciprocal transformation (5.21), f (u) must be the density of a conservation law, i.e. there exists
a function ρ(u, ux , uxx ) such that

( f (u))t = (ρ(u, ux , uxx ))x .

By using Eq. (5.17), it is easy to see that f (u) must satisfy the following equation:

g1 f ′′′
+ 2g′

1 f ′′
+ g′′

1 f ′
− g2 f ′′

− g′

2 f ′
+ 2g3 f ′

= 0, (5.23)
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and the flux ρ is given by

ρ = u f − f̃ + ε2
(

g1 f ′uxx +
1
2

(
g2 f ′

− g1 f ′′
− g′

1 f ′
)

u2
x

)
, (5.24)

where f̃ (u) =
∫

f (u)du.
Suppose that we have a function f (u) satisfying (5.23) and a function ρ given by (5.24), then the reciprocal

transformation (5.21) is well defined and it converts Eq. (5.17) to the following equation:

us = f̃ (u)u y + ε2
(

g1(u) f (u)3u yyy + g̃2(u)u yyu y + g̃3(u)u3
y

)
. (5.25)

To complete the proof, we only need to show that f = g
−

1
3

1 is a solution of Eq. (5.23). In fact, after the substitutions

of f = g
−

1
3

1 and (5.20) into Eq. (5.23), we obtain an equation that is equivalent to (5.19). The lemma is proved. �

Now let us perform a Miura-type transformation of the first kind

u 7→ ũ = f̃ (u)

to Eq. (5.22). We obtain an equation of the following form:

ũs = ũũ y + ε2
(

ũ yyy + ḡ2(ũ)ũ yy ũ y + ḡ3(ũ)ũ3
y

)
. (5.26)

Since the above reciprocal and Miura-type transformations keep the formal integrability property, the functions
ḡ1 = 1, ḡ2, ḡ3 also satisfy the conditions (5.18)–(5.20), i.e.

ḡ′′

2 − 2ḡ2ḡ′

2 +
4
9

ḡ3
2 = 0, (5.27)

ḡ3 =
1
24

(
2ḡ2

2 + 9ḡ′

2

)
. (5.28)

Lemma 5.7. Suppose the functions ḡ2(ũ), ḡ3(ũ) satisfy the conditions (5.27), (5.28), then there exists a Miura-type
transformation

u 7→ ū = ũ + ε f0(ũ)ũ y + ε2
(

f1(ũ)ũ yy + f2(ũ)ũ2
y

)
(5.29)

that transforms Eq. (5.26) to the KdV equation

ūs = ūū y + ε2ū yyy .

Proof. The ODE (5.27) has the following general solution:

ḡ2(ũ) = −
3 f ′(ũ)

2 f (ũ)
, f (ũ) = a0 + a1ũ + a2ũ2,

where a0, a1, a2 are arbitrary constants. Let us take

f0 =

√
3
2

√
4a0a2 − a2

1
√

f
√

f ′ + 2
√

a2
√

f
, f1 =

3
√

a2

2
√

f
, f2 = f ′

1 −
1
6

f 2
1 .

The lemma is proved after a straightforward verification. �

The above three Lemmas show that Eq. (5.17) is formally integrable if the functions g1, g2, g3 satisfy (5.18)–(5.20),
and that modulo reciprocal and Miura-type transformations there is only one formally integrable equation, namely,
the KdV equation. So our formal integrability in fact leads to integrable equations in the common sense.

To see some concrete formally integrable equations of the form (5.17) that are in different guises of the KdV
equation, let us further impose the additional conditions on the functions g1, g2, g3 by requiring that the right-hand
side of (5.17) is graded homogeneous with respect to the following grading:

deg u = 1, deg ∂m
x u = 1 − m, deg ε = 1 + δ, (5.30)
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where δ is a certain constant. Since g1(u) 6= 0, we can take

g1(u) = u1−2δ, g2(u) = αu−2δ, α is constant. (5.31)

Then Eqs. (5.18), (5.19) have the following solutions (α, δ):(
0,

1
2

)
,

(
−

3
2
,

1
2

)
,

(
−3,

1
2

)
, (−2, 0), (−1, 0),

(
0, −

1
4

)
,(

−
3
4
, −

1
4

)
,

(
0, −

1
2

)
, (−6, 2).

The associated equations are given by(
0,

1
2

)
: ut = uux + ε2uxxx , (5.32)(

−
3
2
,

1
2

)
: wt = w2wx + ε2wxxx , w2

= u, (5.33)(
−3,

1
2

)
: ut = uux + ε2

(
uxxx −

3
u

ux uxx +
15

8u2 u3
x

)
, (5.34)

(−2, 0) : wt = w3wx + ε2w3wxxx , w3
= u, (5.35)

(−1, 0) : wt = w3wx + ε2
(

3w2wxwxx + w3wxxx

)
, w3

= u, (5.36)(
0, −

1
4

)
: wt = w2wx + ε2

(
3w2wxwxx + w3wxxx

)
, w2

= u, (5.37)(
−

3
4
, −

1
4

)
: wt = w2wx + ε2

(
3
2
w2wxwxx + w3wxxx

)
, w2

= u, (5.38)(
0, −

1
2

)
: ut = uux + ε2

(
u2uxxx +

1
9

u3
x

)
, (5.39)

(−6, 2) : wt =
wx

w
+ ε2w3wxxx ,

1
w

= u. (5.40)

The first two Eqs. (5.32) and (5.33) are the KdV and mKdV equations, respectively. The third one (5.34) is
equivalent to the KdV Eq. (5.32) by the following Miura-type transformation:

u 7→ ũ = u + ε2
(

3uxx

2u
−

15u2
x

8u2

)
, (5.41)

where u satisfies (5.34) and ũ satisfies (5.32).
Eqs. (5.32)–(5.34) have the following pairs of conserved quantities, respectively:∫

udx,

∫
u2dx;

∫
wdx,

∫
w2dx;

∫
√

udx,

∫
1

√
u

dx .

By using these conserved quantities, we can define six reciprocal transformations that relate the remaining six Eqs.
(5.35)–(5.40) to the first three Eqs. (5.32)–(5.34). Let us consider in detail the reciprocal transformation that is defined
by the second conserved quantity

∫
u2(x, t)dx of Eq. (5.32). The conservation law is given by(

u2
)

t
= ρx , where ρ =

2
3

u3
+ ε2

(
2uuxx − u2

x

)
. (5.42)

Thus we can define the following reciprocal transformation:

dy = u2dx + ρdt, ds = dt. (5.43)
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Its inverse is given by

dx =
1

u2 dy −

(
2
3

u + ε2
(

2uxx

u
−

u2
x

u2

))
ds, dt = ds. (5.44)

From definition (5.43), we obtain ∂x = u2∂y , so

ux = u2u y, uxx = u2
(

u2u yy + 2uu2
y

)
. (5.45)

Now the reciprocal transformation (5.44) can be rewritten as

dx =
1

u2 dy −

(
2
3

u + ε2
(

2u3u yy + 3u2u2
y

))
ds, dt = ds. (5.46)

So, in terms of the new independent variables y, s, the function u satisfies the following equation:

us =
u3

3
u y + ε2

(
u6u yyy + 6u5u yu yy + 3u4u3

y

)
. (5.47)

By performing the rescaling s 7→ s̃ = s/3, ε 7→ ε̃ =
√

3ε and the Miura-type transformation of first kind
u 7→ ũ = u3, the above equation is transformed to

ũ s̃ = ũũ y + ε̃2
(

ũ2ũ yyy +
1
9

ũ3
y

)
, (5.48)

which coincides with Eq. (5.39).
For the other cases, we only point out the following facts:

1. Eq. (5.32) is transformed to Eq. (5.37) by the reciprocal transformation defined by the conserved quantity
∫

udx .
2. Eq. (5.33) is transformed to Eqs. (5.36) and (5.38), respectively, by the reciprocal transformations defined by the

conserved quantities
∫

wdx and
∫

w2dx .
3. Eq. (5.34) is transformed to Eqs. (5.35) and (5.40), respectively, by the reciprocal transformations defined by the

conserved quantities
∫ √

udx and
∫

1/
√

udx .

Note that Eq. (5.36) and (5.37) are two cases of the S-integrable equation (3.55) given in [2].

The analysis of the above two examples shows that the formal integrability condition is rather rigid. Modulo
the Miura-type transformations and reciprocal transformations, the Burgers equation and the KdV equation are the
only integrable equations among the two classes of equations of the form (5.7) and (5.17). The following conjecture
generalizes the results of the first example:

Conjecture 5.8. All the formally integrable equations written in the reduced form

ut = uux + ε( f2(u)u2 + f11(u)u2
1) + ε2 f3(u)u3 + ε3( f4(u)u4 + f22(u)u2

2) + · · · (5.49)

with f2(u) 6= 0 are parameterized by the functions f2(u) and f11(u). In other words, the formal integrability condition
for Eq. (5.49) with f2(u) 6= 0 uniquely determines all the coefficient functions fλ(u) with |λ| > 2 through the functions
f2(u) and f11(u), for example,

f3 =
4
3

f2 f11 +
2
3

f2 f ′

2,

f4 =
5
3

f 2
2 f ′

11 +
1
3

f 2
2 f ′′

2 + 2 f2 f 2
11 +

1
3

f2( f ′

2)
2
+

5
3

f11 f2 f ′

2,

f22 = −
10
3

f 3
11 − f 2

11 f ′

2 +
1
3

f11( f ′

2)
2
−

29
3

f2 f11 f ′

11 −
10
3

f2 f11 f ′′

2

− 4 f2 f ′

2 f ′

11 − f2 f ′

2 f ′′

2 − 3 f 2
2 f ′′

11 − f 2
2 f ′′′

2 , . . . .

Moreover, modulo a certain reciprocal transformation, a formal integrable equation of the above form is equivalent,
under a Miura-type transformation, to a formal symmetry of the Burgers equation (4.19).
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The parameter space for the class of integrable equations of the form (5.49) with f2(u) = 0 is as yet unknown.
It seems that there exist infinitely many function parameters in this space. We hope that the additional condition
of possessing a hamiltonian structure will restrict this parameter space to a manageable one. We will consider this
problem in subsequent publications.

6. Conclusion

We have proved the quasi-triviality of a generalized evolutionary PDE of the form (1.5) and proposed a criterion
for its integrability. Due to Proposition 4.2, the proof of Theorem 4.3 gives a constructive algorithm to obtain an
explicit expression of the quasi-Miura transformation that reduces Eq. (1.5) to its leading term Eq. (1.7). Also, due
to Proposition 4.2, the explicit expression of the flows of the form (5.2) that commute with (1.5) can be obtained in
a direct way, as explained in the beginning of Section 5, thus the algorithm of testing the formal integrability of an
equation of the form (1.5) can be encoded into a simple computer program.

Now, it is natural to ask the question whether the quasi-triviality property can be generalized to systems of
generalized evolutionary PDEs of the form

ui
t =

n∑
j=1

λi
j (u)u j

x +

∑
k≥1

εk Qi
k(u, ux , . . . , u(k+1)), i = 1, . . . , n ≥ 2, (6.1)

where u = (u1, . . . , un), λi
j are smooth functions of u and Qi

k are homogeneous polynomials of ∂m
x ul ,

l = 1, . . . , n, m = 1, . . . , k + 1 with degree k + 1, where we define deg ∂m
x ul

= m. It is proved in [9] that, if
the above system has a semisimple bihamiltonian structure, then it is quasi-trivial, i.e. there exists a quasi-Miura
transformation of the form

ui
7→ vi

= ui
+

∑
k≥1

εk F i
k (u, ux , . . .), i = 1, . . . , n (6.2)

that reduces the above system to a system given by its leading terms

vi
t =

n∑
j=1

λi
j (v)v

j
x . (6.3)

We expect that the condition of possessing a semisimple bihamiltonian structure could be replaced by a much weaker
one in order to ensure the quasi-triviality of the systems of the above form.

The definition of formal integrability for equations of the form (1.5) can be directly generalized to systems of
equations of the form (6.1). We plan to study the problem of its quasi-triviality and integrability in subsequent
publications.
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